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Abstract

The emphasis of this review is on fundamental properties, degree of universality
and symmetries of the turbulent state. The central questions are which
symmetries remain broken even when the symmetry-breaking factor reaches
zero, and which symmetries, in contrast, emerge in the state of developed
turbulence. We shall see that time reversibility is broken in all cases since
turbulence is a far-from-equilibrium state accompanied by dissipation. As far
as scale invariance is concerned, we argue that it is always broken in direct
cascades (toward small scales) no matter how far one goes away from the
pumping scale. In contrast, inverse cascades become scale invariant as they go
toward large scales. Moreover, some properties of the inverse cascades seem
to be conformal invariant and related to Schramm–Loewner evolution (a class
of random curves that can be mapped to a 1D Brownian walk).

PACS numbers: 47.27.−i, 47.53.+n, 05.45.Df, 11.25.Hf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We define turbulence as a state of a physical system with many interacting degrees of freedom
deviated far from equilibrium. This state is irregular both in time and in space and is
accompanied by dissipation. Developed turbulence corresponds to the case when the scales
of externally excited and effectively dissipated motions are vastly different. For example,
a moving car leaves behind meter-size vortices while viscous friction is only effective for
eddies smaller than a fraction of a millimeter. Instabilities of large vortices, their breakdown
and fragmentation bring energy from input to dissipation scales by a cascade. Cascade must
be a natural state of any nonlinear system where input and output are far away as long
as the interaction is effectively local. Locality here means that effective energy exchange
between different modes reaches zero with the ratio of their scales. Apart from energy, other
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quantities conserved by interaction can cascade too. For example, during ore pulverization
(when colliding stones are broken) mass cascades toward smaller sizes, while in water droplet
coagulation (say, in clouds) mass cascades toward larger sizes. The cascade toward small
scales is usually called direct while that toward large scales is called inverse. If a system
has more than one conservation law in the absence of input and dissipation, then input at
some scale can generate both direct and inverse cascades simultaneously, as happens for two-
dimensional vortex turbulence according to Kraichnan [36] or wave turbulence on a water
surface according to Zakharov [13, 58]. The interval of scales between input and output is
called the inertial interval (or transparency window).

Developed turbulence contains many excited degrees of freedom and requires a statistical
description. In most cases, many strongly interacting degrees of freedom can be neither
described theoretically nor satisfactory modeled on computer. Therefore, general symmetry
aspects of turbulence statistics are of prime importance. Relevant symmetries are that of
the measure. Consider, for instance, the probability distribution P(δv, r) of the longitudinal
velocity difference δv = (δv · r)/r measured at two points separated by the distance r. One
asks whether the distribution is

• time reversible, P(δv, r) = P(−δv, r),

• isotropic, P(δv, r) = P(δv, r),

• scale invariant, P(δv, r) = (δv)−1f (δv/rh).

One can also ask if the statistics is invariant with respect to Galilean transform v → v + const.
To keep a system in a turbulent state (i.e. away from equilibrium) one needs some external
force, which generally breaks isotropy and scale invariance. Turbulence in a statistically steady
state is necessarily accompanied by dissipation which breaks time reversibility. Yet these two
mechanisms act on vastly different scales so one asks if the symmetries are restored in the
inertial interval (so that some information on pumping and dissipation is forgotten). One can
use the cascade idea to establish non-restoration of time reversibility. For an incompressible
fluid, the energy flux (per unit mass) ε through the given scale r can be estimated via the
velocity difference δv measured at that scale as the energy (δv)2 divided by the time r/δv.
Requirement of the flux constancy across the scales gives (δv)3 ∼ εr . Of course, δv is a
fluctuating quantity and we ought to make statements on its moments or probability distribution
P(δv, r). Energy flux constancy fixes the third moment, 〈(δv)3〉 ∼ εr . Since velocity changes
sign under time reflection then a nonzero third moment means that time reversibility is broken.
Assuming that the energy input rate ε is independent of viscosity we see that the energy flux
constancy is an example of an anomaly: the effect of symmetry breaking remains finite when
the symmetry-breaking factor (viscosity) reaches zero. This so-called dissipative anomaly
has been discovered by Kolmogorov in 1941 so it is probably the first anomaly in physics;
conceptually it is similar to the axial anomaly in quantum field theory as first noted by
Polyakov [47]. As we have shown, the cascade idea can indeed be turned into an exact relation
which requires the flux (the third-order moment) to be constant across the inertial interval of
scales.

One can now follow Kolmogorov (Onsager, Heizenberg and many others) and try to
use the flux relation to guess the scaling properties of turbulence, in particular, the index h
assuming the probability distribution is scale invariant. Is it enough to know just the flux,
i.e. the input rate of energy (or other quantity) in a statistical steady state? A positive answer
would mean universality of turbulence, i.e. independence of the details of the pumping. The
answer on scale invariance and universality is ‘definitely no for direct cascades’ and ‘probably
yes for inverse cascades’, as discussed below.
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2. Direct cascades

Here we consider direct cascades and discover that the symmetries broken by pumping and
dissipation are not restored in the inertial interval.

2.1. Burgers and KPZ

Consider arguably the simplest hydrodynamic system. In the reference frame moving with
the sound velocity c, the velocity u of a weakly compressible 1D flow (u � c) satisfies the
Burgers equation [23, 29, 39]:

ut + uux − νuxx = 0. (1)

This equation can be also written for the potential h defined by u = ∇h, then it can be
considered in multi-dimensional versions as well when it describes surface growth, directed
polymer etc. Such a form

ht + (∇h)2/2 − ν�h = ξ (2)

is called the Kardar–Parisi–Zhang (KPZ) equation when the driving force is white both in
time and in space: 〈ξ(x, t)ξ(0, 0)〉 = T δ(t)δ(x). To have a benchmark for comparison, let
us describe briefly the properties of such a state driven at small scales before we turn to
turbulence. This state has a simple Gaussian equilibrium (Gibbs) single-point probability
distribution: P(h) ∼ exp(−U/T ) where the energy U = ∫

h2
x dx

/
2 is conserved by the

nonlinear term in 1D. Indeed, the Fokker–Planck equation for the probability density function
(PDF)

∂P(h, t)

∂t
=

∫
dx

δ

δh(x)

[
T

δP
δh(x)

− P
(

δU

δh(x)
+

h2
x

2

)]
(3)

has such a solution since
∫

dx h2
xδU

/
δh = ∫

dx h2
xhxx = 0 and

∫
dx δh2

x

/
δh(x) = 0.

Gaussian statistics is completely determined by the second moment which behaves in a
diffusive way

〈[h(x) − h(0)]2〉 =
∫ ∞

−∞
[exp(iqx) − 1]

T

q2

dq

2π
= T |x|. (4)

The probability density function (PDF) for the velocities is thus steady, time reversible and
scale invariant.

Consider now the Burgers turbulence driven by a large-scale force or appearing from
a large-scale initial distribution. Note that (1) has a propagating shock-wave solution u =
v tanh[v(x − vt)/2ν] with the energy dissipation rate ν

∫
u2

x dx independent of ν. The shock
width ν/v is a dissipative scale and we consider acoustic turbulence produced by pumping
correlated on much larger scales (for example, pumping a pipe from one end by frequencies
much less than cv/ν) so that the Reynolds number is large. After some time, it will develop
shocks at random positions. Structure functions, Sn(x, t) = 〈[u(x, t) − u(0, t)]n〉, can be
readily determined assuming that Burgers turbulence consists of shocks separated by smooth
parts. In this case, Sn(x) ∼ Cn|x|n + C ′

n|x| where the first term comes from the regular
(smooth) parts of the velocity while the second comes from O(x) probability to have a shock
in the interval x. The scaling exponents, ξn = d ln Sn/d ln x, thus behave as follows: ξn = n

for n � 1 and ξn = 1 for n > 1. Moreover, we can find not only scaling exponents but also
factors since all the moments with n > 1 are determined solely by shocks at the limit x → 0.
Take u = v tanh(vx/2ν) and get S3 = 8v3x/L and ε2 = ν

〈
u2

x

〉 = L−1ν
∫ L/2
−L/2 u2

x dx = 2v3/3L

which gives the energy flux relation

S3 = −12ε2x. (5)
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We see that indeed the third moment is expressed solely via the mean energy dissipation rate
which is the energy flux. Further, denote ε4 = 6ν

[〈
u2u2

x

〉
+〈u2〉〈u2

x

〉]
and get

〈
u2u2

x

〉 = 2v5/15L

so that ε4 = −24v5/5L. Substituting v5/L = 5ε4/24 into S5 = 32v5x/L we get

S5 = −20ε4x/3 = −40νx
[〈
u2u2

x

〉
+ 〈u2〉〈u2

x

〉]
. (6)

One can derive such relations from the equation on the structure functions

∂S2n

∂t
= −2n − 1

2n + 1

∂S2n+1

∂x
− 4εn + ν

∂2S2n

∂x2
. (7)

Here we denoted 〈Ėn〉 = εn the viscous dissipation rates of the integrals En = ∫
u2n dx/2

which are conserved by the inviscid Burgers equation (see, e.g., [48]). For example, consider
an unforced case and n = 2, then write ∂tS4/4 = −(3/20)∂xS5 − 6ν

[〈
u2u2

x

〉
+

〈
u2

1u
2
2x

〉]
+

12ν
〈
u1u2u

2
1x

〉
+ 2ν

〈
u3

1u2xx

〉
. Since the distance x12 is in the inertial interval then we can neglect〈

u3
1u2xx

〉
and

〈
u1u2u

2
1x

〉
, and we can put

〈
u2

1u
2
2x

〉 ≈ 〈u2〉〈u2
x

〉
.

Equation (7) describes both a free decay (then εn depends on t) and the case of a
permanently acting pumping which generates turbulence statistically steady at scales less
than the pumping length. In both cases we can neglect the left-hand side (in the first case,
∂S2n/∂t � S2nu/L � εn � u2n+1/L where L is a typical distance between shocks) while
in the second case ∂S2/∂t = 0. Consider now limit ν → 0 at fixed x (and t for decaying
turbulence). Shock dissipation provides for a finite limit of εn at ν → 0 then

S2n+1 = −4
2n + 1

2n − 1
εnx. (8)

This equation shows that all possible symmetries are broken. First, nonzero odd moments of
the velocity mean time irreversibility. Second, neither En, εn nor S2n+1 are Galilean invariant
for n > 2, see also [10]. Third, the PDF is not scale invariant, that is the function of the
re-scaled velocity difference δu/xh cannot be made scale independent for any h. Breakdown
of scale invariance means that the low-order moments decrease faster than the high-order ones
as one goes to smaller scales, i.e. the smaller the scale the more probable are large fluctuations
and the statistics is getting more and more non-Gaussian. In other words, the probability of
strong fluctuations increases with the resolution. When the scaling exponents ξn do not lie on
a straight line, this is called an anomalous scaling since it is related again to the symmetry
(scale invariance) of the PDF broken by pumping and not restored even when x/L → 0.

We thus conclude that the PDF of the velocity differences in the inertial interval depends on
the infinitely many pumping related parameters, the fluxes of all dynamical integrals of motion.
Simple bi-modal nature of the Burgers turbulence (shocks and smooth parts) means that the
PDF is actually determined by two (non-universal) functions, each depending on a single
argument: P(δu, x) = δu−1f1(δu/x) + xf2(δu/urms). Note that S2(x) ∝ |x| corresponds to
E(k) ∝ k−2, since every shock gives uk ∝ 1/k at k � v/ν, that is the energy spectrum is
determined by the type of structures (shocks) rather than by energy flux constancy. That is,
Burgers turbulence demonstrates universality of a different kind: the type of structures that
dominate turbulence (here, shocks) is universal while the statistics of their amplitudes depends
on pumping.

2.2. 3D Navier–Stokes turbulence

An incompressible fluid flow is described by the Navier–Stokes equation

∂tv(r, t) + v(r, t) · ∇v(r, t) − ν∇2v(r, t) = −∇p(r, t), div v = 0. (9)

We are again interested in the structure functions Sn(r, t) = 〈[(v(r, t) − v(0, t)) · r/r]n〉
and consider distance r smaller than the force correlation scale for a steady case and smaller
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Figure 1. The scaling exponents of the structure functions ξn for Burgers, ζn for 3D Navier–Stokes
and σn for the passive scalar. The dotted straight line is n/3.

than the size of the turbulent region for a decay case. Similar to (7), one can derive the
Karman–Howarth relation between S2 and S3 (see [39]):

∂S2

∂t
= − 1

3r4

∂

∂r
(r4S3) +

4ε

3
+

2ν

r4

∂

∂r

(
r4 ∂S2

∂r

)
. (10)

Here ε = ν〈(∇v)2〉 is the mean energy dissipation rate. Neglecting the time derivative (which
is zero in a steady state and small compared to ε for decaying turbulence) one can multiply
(10) by r4 and integrate: S3(r) = −4εr/5 + 6ν dS2(r)/dr . Kolmogorov considered the
limit ν → 0 for fixed r and assumed nonzero limit for ε which gives the so-called 4/5 law
[28, 35, 39]:

S3 = − 4
5εr. (11)

Similar to (5), this relation means that the kinetic energy has a constant flux in the inertial
interval of scales (the viscous scale η is defined by νS2(η) � εη2). Let us stress that this
flux relation is built upon the assumption that the energy dissipation rate ε has a nonzero
limit at vanishing viscosity. Since the input rate can be independent of viscosity, this is the
assumption needed for an existence of a steady state at the limit: no matter how small the
viscosity, or how high the Reynolds number or how extensive the scale-range participating in
the energy cascade, the energy flux is expected to remain equal to that injected at the stirring
scale. Unlike compressible (Burgers) turbulence, here we do not know the form of the specific
singular structures that are supposed to provide non-vanishing dissipation in the inviscid limit
(as shock waves do). Experimental data show, however, that the dissipation rate is indeed
independent of the Reynolds number when Re  1 which means again dissipative anomaly
and time irreversibility of the velocity statistics even at scales far exceeding the viscous scale.
If one screens a movie of steady turbulence backward, it looks wrong.

The law (11) shows that the third-order moment is universal, i.e. it does not depend on the
details of the turbulence production but is determined solely by the mean energy dissipation
rate. The rest of the structure functions have never been derived. Experiments suggest that
ζn = d ln Sn/d ln r lie on a smooth concave curve sketched in figure 1, see e.g. [27]. While ζ2

is close to 2/3 it has to be a bit larger because experiments show that the slope at zero dζn/dn is
larger than 1/3 while ζ(3) = 1 is in agreement with (11). Like in Burgers, the PDF of velocity
differences in the inertial interval is not scale invariant in the 3D incompressible turbulence.
So far, nobody has been able to find an explicit relation between the anomalous scaling for
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3D Navier–Stokes turbulence and either structures or additional integrals of motion. We
understand qualitatively the breakdown of scale invariance in Navier–Stokes turbulence and
in a related problem of passive scalar turbulence in terms of statistical Lagrangian integrals
of motion (as opposite to dynamical integrals in the Burgers turbulence), see the following
section 2.3. Namely, it is believed that the correlation functions are determined by persistent
structures. For example, the second velocity moment must have a scaling (close but not equal
to 2/3) of the statistically conserved quantity build out of velocity vectors of two fluid particles
and the distance between them: this scaling is determined by the law of de-correlation of two
vectors convected by the flow (rather than energy flux constance which determines only the
third moment).

2.3. Passive scalar turbulence

Consider a scalar quantity θ(r, t) which is passively carried by the fluid flow and is also a
subject to molecular diffusion and external source:

∂tθ + (v · ∇)θ = κ∇2θ + ϕ. (12)

If the source ϕ produces fluctuations of θ on some scale L then the inhomogeneous velocity
field stretches, contracts and folds the field θ producing progressively smaller and smaller
scales—this is the mechanism of the scalar cascade. If the rms velocity gradient is � then
molecular diffusion is substantial at scales less than the diffusion scale rd = √

κ/�. For scalar
turbulence, the ratio Pe = L/rd , called the Peclet number, plays the role of the Reynolds
number. When Pe  1, there is an inertial interval with a constant flux of θ2:

〈(v1 · ∇1 + v2 · ∇2)θ1θ2〉 = 2P, (13)

where P = κ〈(∇θ)2〉 = 〈ϕθ〉 and subscripts denote the spatial points. The correlation function
(13) changes sign under the time reflection so its nonzero value means time irreversibility.
Finiteness of P at κ → 0 signals again a dissipative anomaly.

In considering the passive scalar problem, the velocity statistics is presumed to be given.
Still, the correlation function (13) mixes v and θ and does not generally allow one to make
a statement on any correlation function of θ . The proper way to describe the correlation
functions of the scalar at scales much larger than the diffusion scale is to employ the Lagrangian
description, that is to follow fluid trajectories. Indeed, if we neglect diffusion, then equation
(12) can be solved along the characteristics R(t) which are called Lagrangian trajectories and
satisfy dR/dt = v(R, t). Presuming zero initial conditions for θ at t → −∞, we write

θ(R(t), t) =
∫ t

−∞
ϕ(R(t ′), t ′) dt ′. (14)

In that way, the correlation functions of the scalar Fn = 〈θ(r1, t) . . . θ(rn, t)〉 can be obtained
by integrating the correlation functions of the pumping along the trajectories that satisfy
the final conditions Ri (t) = ri . We consider a pumping which is Gaussian, statistically
homogeneous and isotropic in space and white in time

〈ϕ(r1, t1)ϕ(r2, t2)〉 = �(|r1 − r2|)δ(t1 − t2),

where the function � is constant at r � L and goes to zero at r  L. The pumping provides
for symmetry θ → −θ which makes only even correlation functions F2n nonzero. The pair
correlation function is as follows:

F2(r, t) =
∫ t

−∞
�(R12(t

′)) dt ′. (15)

6



J. Phys. A: Math. Theor. 42 (2009) 123001 Topical Review

Here R12(t
′) = |R1(t

′) − R2(t
′)| is the distance between two trajectories and R12(t) = r .

The function � essentially restricts the integration to the time interval when the distance
R12(t

′) � L. Simply speaking, the stationary pair correlation function of a tracer is �(0)

(which is twice the injection rate of θ2) times the average time T2(r, L) that two fluid particles
spent within the correlation scale of the pumping. The larger the r, the less time it takes
for the particles to separate from r to L and the less F2(r) is. Of course, T12(r, L) depends
on the properties of the velocity field. How does one build the Lagrangian description when
the velocity is not spatially smooth, for example, that of the energy cascades in the inertial
interval with δv ∝ r1/3? Again, the only exact relation one can derive for two fluid particles
separated by a distance in the inertial interval is for the Lagrangian time derivative of the
squared velocity difference [26]:〈

d|δv|2
dt

〉
= 2ε

—this is the Lagrangian counterpart to (5), (11), (19). One can assume that the statistics of
the distances between particles is also determined by the energy flux. That assumption leads,
in particular, to the Richardson law for the asymptotic growth of the inter-particle distance:〈

R2
12(t)

〉 ∼ εt3, (16)

first inferred from atmospheric observations (in 1926) and later from experimental data on the
energy cascades both in 3D and in 2D. There is no consistent theoretical derivation of (16)
and it is unclear whether it is exact (likely to be in 2D) or just approximate (possible in 3D).
A semi-heuristic argument usually presented in textbooks is based on the mean-field estimate:
Ṙ12 = δv(R12, t) ∼ (εR12)

1/3 which upon integration gives R
2/3
12 (t)−R

2/3
12 (0) ∼ ε1/3t . While

this argument is at best a crude estimate in 3D (where there is no definite velocity scaling
since every moment has its own exponent ζn) we use it to discuss implications for the passive
scalar1.

For two trajectories, the Richardson law gives the separation time from r to L:
T2(r, L) ∼ ε−1/3[L2/3 − r2/3]. Note that T2(r, L) has a finite limit at r → 0—infinitesimally
close trajectories separate in a finite time. This leads to non-uniqueness of Lagrangian
trajectories (non-smoothness of the velocity field means that the equation Ṙ = v(R) is non-
Lipschitz). As discussed in much detail elsewhere [26, 13], this leads to a finite dissipation
of a transported passive scalar even without any molecular diffusion (which corresponds to a
dissipative anomaly and time irreversibility). Indeed, substituting T2(r, L) into (15), one gets
the steady-state pair correlation function of the passive scalar: F2(r) ∼ �(0)ε−1/3[L2/3−r2/3]
as suggested by Oboukhov (1949) [44] and Corrsin (1952) [21]. The structure function
is then S2(r) ∼ �(0)ε−1/3r2/3. Experimental measurements of the scaling exponents
σn = d ln Sn(r)/d ln r generally give σ2 close to 2/3 but higher exponents deviating from
the straight line are even stronger than the exponents of the velocity in 3D as seen in figure 1.
Moreover, the scalar exponents σn are anomalous even when the advecting velocity has a
normal scaling like in the 2D energy cascade (described in section 3.2 below).

To explain the dependence σ(n) and describe multi-point correlation functions or high-
order structure functions one needs to study multi-particle statistics. Here an important
question is what memory of the initial configuration remains when final distances far exceed
initial ones. To answer this question one must analyze the conservation laws of turbulent
diffusion. We now describe a general concept of conservation laws which, while conserved
only on average, still determine the statistical properties of strongly fluctuating systems. In

1 What matters here and below is that in a non-smooth flow Ra
12(t) − Ra

12(0) ∼ t with a < 1, not the precise value
of a.

7
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a random system, it is always possible to find some fluctuating quantities which ensemble
averages do not change. We now ask a subtler question: is it possible to find quantities that
are expected to change on dimensional grounds but stay constant [26, 27]? Let us characterize
n fluid particles in a random flow by inter-particle distances Rij (between particles i and j ).
Consider homogeneous functions f of inter-particle distances with a nonzero degree σ , i.e.
f (λRij ) = λσf (Rij ). When all the distances grow on average, say according to

〈
R2

ij

〉 ∝ ta ,
then one expects that a generic function grows as f ∝ taσ/2. How are (specific) functions
that are conserved on average built, and which σ -s do they have? As the particles move in a
random flow, the n-particle cloud grows in size and the fluctuations in the shape of the cloud
decrease in magnitude. Therefore, one may look for suitable functions of size and shape
that are conserved because the growth of distances is compensated by the decrease of shape
fluctuations.

For the simplest case of a Brownian random walk, inter-particle distances grow by the
diffusion law:

〈
R2

ij (t)
〉 = R2

ij (0) + κt,
〈
R4

ij (t)
〉 = R4

ij (0) + 2(d + 2)
[
R2

ij (0)κt + κ2t2
]/

d,
etc. Here d is the space dimensionality. Two particles are characterized by a single
distance. Any positive power of this distance grows on average. For many particles, one
can build conserved quantities by taking the differences where all powers of t cancel out:
f2 = 〈

R2
12 − R2

34

〉
, f4 = 〈

2(d + 2)R2
12R

2
34 − d

(
R4

12 + R4
34

)〉
, etc. These polynomials are

called harmonic since they are zero modes of the Laplacian in the two-dimensional space of
R12, R13. One can write the Laplacian as � = R1−2d∂RR2d−1∂R + �θ , where R2 = R2

12 + R2
13

and �θ is the angular Laplacian on (2d − 1)-dimensional unit sphere. Introducing the angle,
θ = arcsin(R12/R), which characterizes the shape of the triangle, we see that the conservation
of both f2 = 〈R2 cos 2θ〉 and f4 = 〈R4[(d + 1) cos2 2θ − 1]〉 can also be described as due to
cancelation between the growth of the radial part (as powers of t) and the decay of the angular
part (as inverse powers of t). For n particles, the polynomial that involves all distances is
proportional to R2n (i.e. σn = n) and the respective shape fluctuations decay as t−n.

The scaling exponents of the zero modes are thus determined by the laws that govern
decrease of shape fluctuations. The zero modes, which are conserved statistically, exist for
turbulent macroscopic diffusion as well. However, there is a major difference since the
velocities of different particles are correlated in turbulence. Those mutual correlations make
shape fluctuations decay slower than t−n so that the exponents of the zero modes, σn, grow with
n slower than linearly. This is very much like the total energy of the cloud of attracting particles
that does not grow linearly with the number of particles. Indeed, power-law correlations of the
velocity field lead to super-diffusive behavior of inter-particle separations: the farther particles
are, the faster they tend to move away from each other, as in Richardson’s law of diffusion.
That is, the system behaves as if there was an attraction between particles that weakens with
distance, though, of course, there is no physical interaction among particles (but only mutual
correlations because they are inside the correlation radius of the velocity field). While zero
modes of multi-particle evolution exist for all velocity fields—from those that are smooth to
those that are extremely rough as in Brownian motion—only those non-smooth velocity fields
with power-law correlations provide for an anomalous scaling. Zero modes were discovered
in [18, 32, 52] and then described in [1, 5, 19].

The existence of multi-particle conservation laws indicates the presence of a long-time
memory and is a reflection of coupling among the particles due to the simple fact that they are
all in the same velocity field.

Let us now connect these statistical conservation laws (called martingales in probability
theory) to an anomalous scaling of fields carried by a turbulent flow. According to (14),
the correlation functions of θ are proportional to the times spent by the particles within
the correlation scales of the pumping. The structure functions of θ are differences of
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Figure 2. Two configurations (upper and lower) whose difference determines the third structure
function.

correlation functions with different initial particle configurations as, for instance, S3(r12) ≡
〈[θ(r1) − θ(r2)]3〉 = 3〈θ2(r1)θ(r2) − θ(r1)θ

2(r2)〉. In calculating S3, we are thus comparing
two histories: the first one with two particles initially close to the position r1 and one particle
at r2, and the second one with one particle at r1 and two particles at r2— see figure 2. That is,
S3 is proportional to the time during which one can distinguish one history from another, or
to the time needed for an elongated triangle to relax to the equilateral shape. This time grows
with r12 (as it takes longer to forget a more elongated triangle) by the law that can be inferred
from the law of the decrease of the shape fluctuations of a triangle.

Quantitative details can be worked out for the white in time velocity called the Kraichnan
model [37]. The profound insight of Kraichnan was its spatial rather than temporal non-
smoothness of the velocity that is crucial for an anomalous scaling. Analytical and numerical
calculations of the scaling exponents σn (described in detail in [26]) give σn lying on a convex
curve (see figure 1) which saturates to a constant at large n according to [1]. Such saturation
is a sign that most singular structures in a scalar field are shocks like in Burgers turbulence;
the value σn at n → ∞ is the fractal codimension of fronts in space [16].

The existence of statistical conserved quantities breaks the scale invariance of scalar
statistics in the inertial interval and explains why scalar turbulence knows about pumping
‘more’ than just the value of the flux. Here again the statistics in the inertial interval, apart
from the flux of θ2, depends on the infinity of pumping related parameters. However, these
parameters are neither fluxes of θn, nor we can interpret them as any other fluxes. At the
present level of understanding, we thus describe an anomalous scaling in Burgers and in
passive scalar in quite different terms. Of course, the qualitative appeal to structures (shocks)
is similar but the nature of the conservation laws is different. The anomalies produced by
dynamically conserved quantities (like anomalous scaling in Burgers and time irreversibility in
all cases of turbulence) are qualitatively different from the anomalies produced by statistically
conserved quantities (like breakdown of scale invariance in passive scalar turbulence). Indeed,
dissipation is a singular perturbation which breaks conservation of dynamical integrals of
motion and imposes (one or many) flux-constancy conditions, very much similar to quantum
anomalies. In contrast, there are no cascades of conserved quantity related to zero modes,
nor is their conservation broken by dissipation. Anomalous scaling of zero modes is due to
correlations between different fluid trajectories. On the other hand, the two types of anomalies

9



J. Phys. A: Math. Theor. 42 (2009) 123001 Topical Review

are related intimately: the flux constancy requires a certain degree of velocity non-smoothness,
which generally leads to an anomalous scaling of zero modes.

Both symmetries, one broken by pumping (scale invariance) and another by damping
(time reversibility) are not restored even when r/L → 0 and rd/r → 0.

For the vector field (like the velocity or magnetic field in magnetohydrodynamics) the
Lagrangian statistical integrals of motion may involve both the coordinate of the fluid particle
and the vector it carries. Such integrals of motion were built explicitly and related to the
anomalous scaling for the passively advected magnetic field in the Kraichnan ensemble of
velocities [26]. Doing that for the velocity that satisfies the 3D Navier–Stokes equation
remains a task for the future.

Contrast an anomalous scaling in turbulent direct cascades, which generally involves an
infinite number of different exponents (a property also referred to as multifractality [9]), with
only a few basic exponents that determine equilibrium critical phenomena.

We thus conclude that in direct cascades we have at least two anomalies:

• finite third moment means time irreversibility even when ν → 0,
• scale invariance is not restored even when x/L → 0.

3. Inverse cascades

In this chapter, we consider inverse cascades and discover that, while time reversibility remains
broken, scale invariance is restored in the inertial interval. Moreover, even wider symmetry of
conformal invariance may appear there. A program to extend scale invariance to conformal
invariance in turbulence was suggested by Polyakov [47]. Conformal transformations realize
non-uniform change of scale (preserving the angles) so that conformal invariance can be
thought of as local scale invariance. Specifically, consider turbulence in some connected
domain D ⊂ C and the family of measures μD(z1, . . . , zn), depending on the points zi ∈ D
(for instance, probabilities of the velocity differences in different points). In another domain
D′, a random force with the same correlation radius produces turbulence with another family
μD′ . We call the measure conformal invariant if it is invariant with respect to the conformal
map f : D → D′, that is, μD(z1, . . . , zn) = μD′(f (z1), . . . , f (zn)).

3.1. Inverse cascade of a passive scalar in a compressible flow

Similar to (15) one can derive for a passive scalar from (14)

〈θ(t, r1) . . . θ(t, r2n)〉 =
∫ t

0
dt1 . . . dtn

×〈�(R(t1|T , r12)) . . . �(R(tn|T , r2n−1,2n))〉 + . . . . (17)

The functions � in (17) restrict integration to the time intervals where Rij < L. If the
Lagrangian trajectories separate, the correlation functions reach at long times the stationary
form for all rij . Such steady states correspond to a direct cascade of the tracer (i.e. from large
to small scales) considered above. This generally takes place in incompressible and weakly
compressible flows.

It is intuitively clear that in compressible flows the regions of compressions can trap fluid
particles counteracting their tendency to separate. Indeed, one can show that particles cluster in
flows with high enough compressibility [20, 26, 31]. In particular, particles that start from the
same point will remain together throughout the evolution. That means that advection preserves
all the single-point moments 〈θN 〉(t). These conservation laws are statistical: the moments are
not dynamically conserved in every realization, but their averages over the velocity ensemble
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are. In the presence of pumping, the moments are the same as for the equation ∂tθ = ϕ in
the limit κ → 0 (nonsingular now). It follows that the single-point statistics is Gaussian,
with 〈θ2〉 = �(0)t . That growth is produced by the flux of scalar variance toward the
large scales—a phenomenon that can be loosely called an inverse cascade of a passive tracer
[20, 26, 31]. As is clear from (17), correlation functions at very large scales are related to the
probability for initially distant particles to come close (inside the forcing correlation length L).
The larger the time the larger the distance starting from which particles come within L. The
correlations of the field θ at larger scales are therefore established as time increases, signaling
the inverse cascade process.

The uniqueness of the trajectories greatly simplifies the analysis of the PDF P(δθ, r).
Indeed, the structure functions involve initial configurations with just two groups of particles
separated by a distance r. The particles explosively separate in the incompressible case and we
are immediately back to the full N-particle problem. Conversely, the particles that are initially
in the same group remain together if the trajectories are unique. The only relevant degrees
of freedom are then given by the intergroup separation and we are reduced to a two-particle
dynamics. It is therefore not surprising that the statistics of the passive tracer is scale invariant
in the inverse cascade regime [31]. Using the solvable (Kraichnan) model of a short-correlated
compressible flow, one can show that multi-point correlation functions of the scalar are scale
invariant but not conformal invariant.

An example of a strongly compressible flow is given by Burgers turbulence (1) where
there is clustering (in shocks) for the majority of trajectories (full measure in the inviscid limit).
Considering passive scalar in such a flow, θt + uθx − κ�θ = φ, we conclude that it undergoes
an inverse cascade. The statistics of θ is scale invariant at scales exceeding the correlation
scale of the pumping φ. While the limit κ → 0 is regular (i.e. no dissipative anomaly), the
statistics is time irreversible because of the flux toward large scales. It is instructive to compare
u and θ which are both Lagrangian invariants (tracers) in the unforced undamped limit. When
pumped, the passive quantity θ (and all its powers) go to large scales while all powers of
u cascade toward small scales and are absorbed by viscosity. Physically, the difference is
evidently due to the fact that the trajectory depends on the value of u it carries, the larger the
velocity the faster it ends in a shock and dissipates the energy and other integrals. Formally,
for active tracers like un one cannot write a formula like (17) obtained by two independent
averages over the force and over the trajectories.

3.2. Inverse energy cascades in hydrodynamics

Two-dimensional turbulence is interesting for its own sake and for understanding atmospheric
and oceanic turbulence at the scales larger than the atmosphere height and the ocean depth.
Taking curl of the 2D Navier–Stokes equation one gets

dω/dt = ∂tω + (v · ∇)ω = ν∇2ω. (18)

One sees that the vorticity ω = curl v is a Lagrangian invariant like θ but, of course, not passive.
The two-dimensional incompressible inviscid flow just transports vorticity from place to place
and thus conserves spatial averages of any function of vorticity, �n ≡ ∫

ωn dr. In particular,
any inviscid flow conserves the second quadratic invariant (in addition to energy) which is
called enstrophy: �2 = ∫

ω2 dr. The spectral density of the energy is |vk|2/2 while that of
the enstrophy is |k × vk|2. Pumping (at some kf ) generally provides for an input of both E
and �2. If there are two inertial intervals (at k  kf and k � kf ), then there should be two
cascades. Indeed, absorbing finite amount of �2 at kd → ∞ corresponds to an absorption of
an infinitely small E. It is thus clear that the flux of E has to go in the opposite direction, that
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is, to large scales. For the inverse energy cascade in the 2D Navier–Stokes equation, there is
no consistent theory except for the flux relation that can be derived similarly to (11):

S3(r) = 4εr/3. (19)

Note that the sign is opposite to (11) due to the opposite direction of the cascade. Again,
(19) means that time reversibility is broken in the inverse cascade. Experiments [17, 34, 56]
and numerical simulations [8] demonstrate scale-invariant statistics with the vorticity having
scaling dimension 2/3: ωr ∝ r−2/3. In particular, S2 ∝ r2/3 which corresponds to Ek ∝ k−5/3.
It is ironic that probably the most widely known statement on turbulence, the 5/3 spectrum
suggested by Kolmogorov for 3D, is not correct in this case (even though the true scaling
is close) while it is probably exact in Kraichnan’s inverse 2D cascade. Qualitatively, the
absence of anomalous scaling in the inverse cascade seems to be associated with the growth
of the typical turnover time (estimated, say, as r/

√
S2) with the scale. As the inverse cascade

proceeds, the fluctuations have enough time to get smoothed out as opposite to the direct
cascade in 3D, where the turnover time decreases in the direction of the cascade. Note in
passing that passive scalar undergoes direct cascade in the flow of the 2D inverse energy
cascade; scalar statistics is not scale invariant since the velocity is non-smooth (compare with
the relation between the Lagrangian invariants u and θ for the Burgers turbulence).

The two-dimensional Navier–Stokes equation belongs to a family of models that describe
the transport of a scalar quantity by an incompressible velocity related to a scalar by an
instantaneous linear scale-invariant relation. Consider a real function of time and coordinates,
a(r, t), which evolves according to the equation

∂a/∂t + (v · ∇)a = f + ν�a − αa. (20)

Here r = (x, y) belongs to a two-dimensional manifold (plane, disc or torus) where one
defines a solenoidal vector field of velocity: v = (∂�/∂y,−∂�/∂x). The stream function �

is related to the quantity a by a linear scale-invariant relation �(r, t) � ∫
dr′|r−r′|m−2a(r′, t).

That is, a carried by the velocity v is pumped by the force f and is dissipated by the viscous
and uniform (bottom) friction with the friction coefficients respectively ν and α.

For the models of physical interest, m is integer. The 2D Navier–Stokes equation
corresponds to m = 2 when the pseudo-scalar a = ∇ × v = �� = ω is the vorticity
and �(r, t) = −(2π)−1

∫
dr′ ln |r − r′|a(r′, t). The case m = 1 corresponds to the surface

quasi-geostrophic (SQG) model that describes rotating buoyancy-driven flows near a solid
surface; a is the temperature in this case [33, 45]. The case m = −2 describes large-scale
flows of a rotating shallow fluid [40].

The left part of equation (20) conserves scalar variance
∫

a2(r) dr and the ‘energy’∫
�(r)a(r) dr, the right-hand side describes generation and dissipation. Two quadratic

integrals of motion with a different order of space derivatives mean the existence of two
inertial intervals where the nonlinear (inertial) term of (20) dominates and provides for the
spectral transfer of the scalar and the energy respectively in the direct and inverse cascades.
Here we consider the inverse cascade determined by the ‘energy’ flux ε. Similar to (11), (19)
one can derive 〈

a3
r

〉 � εr2−2m. (21)

The experiments and numerics confirm the relation and show that within the precision
determined by the finiteness of the inertial interval and experimental errors, the probability
distribution is invariant with respect to global (uniform) scale transformations. The index can
be read from (21): h = (2 − 2m)/3, in particular P(ar , r) ∼ a−1

r f (arr
2/3) for m = 2 [8, 15,

17, 34, 56] and P(ar , r) ∼ a−1
r f (ar/ ln(kf r)) for m = 1 [15, 50, 55]. It is this class where

the scale invariance was promoted to conformal invariance. Note that the nonlocal relation
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between the velocity v and the field a it carries makes our systems dynamically nonlocal.
However, we excite the systems by a noise with the short radius of correlation k−1

f and hope
to find locality in statistics. This property takes place for some remarkable class of random
curves which we describe now.

3.3. Schramm–Loewner evolution (SLE)

A non-self-intersecting curve growing from the domain boundary can be described by a
conformal map of the domain with the curve inside into a domain without the curve. For
example, in the simplest case the curve γ (t) starts at the real axis of the half-plane H. Here
t parameterizes the curve; it should not be confused with the time from (20). The map
gt :H\γ (t) → H is fixed by the asymptotics gt (z) ∼ z+2t/z+O(1/z2) at infinity. If the curve
touches itself, one must define the domain K(t) as the union of the curve and all points that
cannot be reached from infinity and consider gt : H\K(t) → H . The growing tip of the curve
is mapped into a real point ξ(t). Loewner found in 1923 that the conformal map gt (z) and the
curve γ (t) are fully parameterized by the tip image ξ(t) called the driving function [42]. For
that one needs to solve the remarkably simple Loewner equation dgt (z)/dt = 2[gt (z)−ξ(t)]−1.
Almost 80 years later, Schramm considered random curves in planar domains and showed
(first, in a particular case) that the measure on the curves is conformal invariant if and only if
ξ(t) = √

κBt , where Bt is a standard one-dimensional Brownian walk [51]. In addition, the
measure μH (γ ; z1, z2) on the curves γ connecting z1 and z2 is Markovian: if to divide γ into
two pieces γ1 from the boundary z1 to z, and γ2 from z to z2, then the conditional measure is as
follows: μH (γ2|γ1; z1, z2) = μH\γ1(γ2; z, z2). Diffusivity κ allows one to classify the classes
of conformal invariance random curves called SLEκ . Such curves have been encountered in
physics before as the boundaries of clusters of 2D critical phenomena described by conformal
field theories. The language and formalism of SLE is a new natural communication tool for
physicists and mathematicians, leading to an explosive growth of new results in mathematics,
field theory and the theory of critical phenomena [2, 11, 41]. We shall see in the following
section that SLE is encountered in hydrodynamics as well.

Let us list here few basic facts about SLE curves. When κ = 0, γ is a vertical straight
line. The larger the κ , the more the curve wiggles. The curve is simple (i.e. with probability
1 does not touch itself or the real axis) when 0 � κ < 4. For SLEκ with 4 � κ < 8, the curve
touches itself but does not fill the space. In this case, one can define an external perimeter (as
a part one can reach from infinity) which belongs to a dual class SLEκ∗ with κ∗ = 16/κ [3,
22, 49]. The fractal dimension of SLEκ curves is Dκ = 1 + κ/8 for κ < 8.

Among the dual pairs, κ and κ∗, one is special from the viewpoint of locality. The
curves from SLE6 do not feel the boundary until they touch it (a rigorous definition of that
property called SLE locality can be found in [41]). The dual curve SLE8/3 has the ‘restriction
property’: the statistics of the curves conditioned not to visit some region is the same as in
the domain without this region. Intuitively, one can appreciate these properties by considering
lattice (discrete) models which turn into the respective SLE in the continuous limit [2, 41].
For example, consider a honeycomb lattice. A random walk along the bonds starts from the
boundary point that has all black hexagons to the left and white to the right and keeps that
property as it moves, turning right/left as it meets black/white hexagons. SLE6 is obtained
from the classical model of critical percolation when hexagons get their colors independently
with the probability 1/2. SLE8/3 corresponds to a self-avoiding random walk when every
bond is visited only once. Also the value κ = 4 is special because it is self-dual corresponding
to the so-called harmonic navigator. In this case, the probability of the color for the hexagon
encountered is determined by the harmonic function defined in the domain with the boundary
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that includes the hexagons colored before; in other words, a new random walk starts from
the hexagon and colors it by the color of the boundary the walk hits [2, 41, 52]. Both SLE6

and SLE4 appear as isolines of Gaussian random fields. If one considers the surface of a
random function of two variables, a(x, y), as a landscape during a great flood then at some
water level the probability to sail across is equal to the probability to walk. At this level,
the shoreline belongs to SLE6 (critical percolation) if the correlation functions of a(x, y)

decay sufficiently fast. In particular, a non-rigorous but plausible Harris criterion claims that
if 〈a(r)a(0)〉 ∼ r−2h and h � 3/4, then isolines of the Gaussian field a are equivalent to
critical percolation [57]. This follows from the fact that when a is non-zero, percolation is
non-critical even for a short-correlated field, and a finite correlation length appears which
scales as lc ∝ a−4/3; this means that the non-zero isoline cannot be distinguished from the
zero isoline at scales shorter than lc. In other words, on a scale r one is allowed fluctuation
of the field less than r−4/3. Therefore, if on the scale r the fluctuations are of the size r−h

with h � 3/4 then the fluctuations of the field a(x, y) are small and its nodal line belongs to
SLE6. In contrast, isolines of the Gaussian field a with h < 3/4 are not equivalent to critical
percolation, i.e. do not belong to SLE6. As far as SLE4 is concerned, this class contains
isolines of Gaussian (free) fields with 〈a(r)a(0)〉 ∼ ln r [12, 14, 52]. How is all that related to
turbulence where the only thing we are sure about is it being non-Gaussian (because the flux
makes the third moment nonzero)?

3.4. Isolines in turbulence

The fractal dimension of SLEκ curves is known to be Dκ = 1 + κ/8 for κ < 8. To establish
a possible link between turbulence and critical phenomena, let us try to relate Richardson
phenomenology to the fractal dimension of the nodal lines. Note that we ought to distinguish
between the dimensionality 2 of the full zero-level set (which is space-filling) and a single
nodal line that encloses a large-scale cluster. Consider the cluster of gyration radius L which
has the ‘outer boundary’ of perimeter P (that boundary is the part of the nodal line accessible
from the outside). The velocity difference δv(l) grows with the distance l. This means that
the two point distance, which satisfies dl/dt = δv(l) cannot grow more slowly than t. In our
case, velocity scaling vl ∼ l(m−1)/3 tells us that for m > 1 we have the velocity difference
δv(l) ∝ l(m−1)/3 and the Richardson law l(t) ∼ t3/(4−m), while for m < 1 we have δv(l) � vrms

and l(t) ∝ t . Perimeter P and gyration radius L can be related by assuming that their ratio,
P/L, which is proportional to the number of folds, grows as a random walk, i.e. t1/2. The
gyration radius grows as two-point distance L(t) ∝ l(t) which gives P ∝ Lt1/2 ∝ L(10−m)/6

for m � 1 and P ∝ L3/2 for 0 � m � 1. Of course, contours reconnect and disconnect but
the scaling must hold for every part and for the whole product of reconnections. Therefore,
we expect the fractal dimension of the external perimeter of the nodal line to be

D =
{
(10 − m)/6 for m � 1,

3/2 for 0 � m � 1.
(22)

In particular, for the Navier–Stokes equation m = 2 and P ∝ L4/3, i.e. the fractal
dimension of the exterior of the vorticity cluster is expected to be 4/3. This remarkable
dimension corresponds to a self-avoiding random walk (SLE curve) which is also known to
be an exterior boundary (without self-intersections) of the percolation cluster (yet another
SLE curve). Figure 3 shows a nodal line of vorticity obtained by a numerical solution of
(20) with m = 2 on a torus (that is, the 2D Navier–Stokes equation with periodic boundary
conditions and added external force and uniform friction); the details can be found in [6, 8].
The force scale is lf = 2π/kf = 0.05. The curve looks fractal at scales exceeding lf , i.e. in
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Figure 3. A portion of a candidate SLE trace obtained from the vorticity field. The figure has been
adapted from [6].

the interval of an inverse cascade. Indeed, the length P grows nonlinearly with the end-to-end
distance L [6]. Power-law exponents of this growth for the curve and its external perimeter
are found to be close within the resolution to the dimensionalities 7/4, 4/3 of the dual pair
SLE6/SLE8/3 (historically, dimensionality 4/3 of the external perimeter has been guessed
from the Kolmogorov–Kraichnan scaling ar ∼ r−2/3, which stimulated the search for SLE
in turbulence [6]). Let us briefly describe how we identified possible curves from an SLE
class and determined the driving function ξ(t). We drew quite arbitrarily a straight line to be
a real axis and at the end checked that translations and rotations of the axis did not change
the results. We then start from the intersection of a zero isoline and the axis and move along
the curve or along the axis (when we return to it) preserving orientation, i.e. keeping positive
vorticity always to the right. Such a procedure faithfully reproduces the statistics only in
the local case, indeed we expected (and found!) κ ≈ 6. We then divided our curve into
small straight segments and approximated the family of conformal maps gt (z) by a discrete
set of standard conformal maps absorbing one segment one by one [6]. The resulting set of
‘times’ ti and values ξi defines the driving function ξ(t). The only thing left is to run the
Schramm test, i.e. to check how well this function corresponds to a Brownian walk. The
data presented by the upward oriented triangles in figure 4 show that the ensemble average
〈ξ(t)2〉 indeed grows linearly in time: the diffusion coefficient κ is very close to the value
6, with an accuracy of 5% (lower inset). The probability distribution functions of ξ(t)/

√
κt

collapse onto a standard Gaussian distribution at all times t (upper inset). Therefore, we expect
that in the limit of vanishingly small Lf the driving ξ(t) tends to true Brownian motion and
zero-vorticity lines become SLEκ traces with κ very close to 6. Note that the vorticity field has
h = 2/3 < 3/4, that is the Harris criterion is violated. However, our field is non-Gaussian—
while the probability distribution looks Gaussian, the deviations are measurable including the
third moment [8, 15, 17, 34, 56]. Triangles pointing down on the lower inset are obtained for
the isolines of a Gaussian field having the same Fourier spectrum as vorticity but randomized
phases. Apparently, our accuracy is sufficient to make sure that it does not correspond to any
SLE including SLE6. Indeed, E[ξ 2]/t ≡ 〈ξ 2〉/t is not constant and approaches the limiting
value κ = 6 only at scales exceeding 2π/kα where the power-law correlation is already cut-off
by friction and the field becomes truly uncorrelated. Something remarkable happens here:

15



J. Phys. A: Math. Theor. 42 (2009) 123001 Topical Review

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0 0.005 0.01
t

< ξ(t)2 >

4
5
6
7
8
9

0 0.005 0.01

<ξ(t)2>/t

-3 -2 -1 0 321

ξ(t)/(κ t)1/2

(κ t)1/2 P(ξ(t))

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 0.02 0.04 0.06 0.08 0.1
t

< ξ(t)2 >

2

3

4

5

6

0 0.05 0.1

<ξ(t)2>/t

-3 -2 -1 0 321

ξ(t)/(κ t)1/2

(κ t)1/2 P(ξ(t))

Figure 4. Demonstration of conformal invariance of the isolines of vorticity in the Euler equation
(left) and of the temperature in the surface geostrophic model (right). The driving function is an
effective diffusion process with diffusion coefficient κ = 6 ± 0.3 (left, [6]) and with κ = 4 ± 0.2
(right, [7]). Right (lower) inset: triangles pointing up correspond to the vorticity, triangles
pointing down to the Gaussian field with the same second moment. Left (upper) insets: the
probability density function of the re-scaled driving function ξ(t)/

√
κt at four different times

t = 0.0012, 0.003, 0.006, 0.009 (left) and t = 0.02, 0.04, 0.08 (right); the solid lines are the
Gaussian distribution g(x) = (2π)−1/2 exp(−x2/2).

non-Gaussianity of the vorticity field, i.e. multi-point correlations, somehow conspire to make
the zero-vorticity line statistically equivalent to the isoline of a short-correlated field even
though the pair correlation function decays slower than the Harris criterion requires.

The identification of isolines as SLEκ curves allows us to apply powerful techniques
borrowed from the theory of stochastic differential equations and conformal mapping theory
and to obtain analytic predictions for some nontrivial statistical properties of lines, vortices and
clusters in turbulence. For example, vorticity nodal lines are boundaries of vorticity clusters.
The statements from the percolation theory that the probability of a cluster (island) decays with
area as s−96/91, and with the perimeter as P −8/7, can be directly confirmed for turbulence [6].
Moreover, SLE allows exact analytic formulae for the probabilities that a nodal line crosses
different figures (triangles, rectangles etc). Such probabilities are determined by the second-
order ordinary differential equation and are expressed via hypergeometric functions, which
miraculously describe turbulence data. It is worth stressing that the maximum one aspired
to in turbulence theory before was to predict a single number (usually a scaling exponent
and often from dimensional reasoning); now we are able to predict non-trivial functions. An
ability to make exact predictions rather than order-of-magnitude estimates is heartening too.
Most important though is that the correspondence between the nodal lines in turbulence and
SLE hints at some fundamental properties of hydrodynamic equations which we do not yet
grasp.

Let us now describe briefly the results for the surface quasi-geostrophic model, m = 1.
In this case, the zero-temperature isoline crosses the straight line rarely, so that we simply
choose as the candidates for SLE the pieces of the curve returning to the line at the distance
far exceeding 2π/kα . The algorithm to extract the driving function is described in [7].
The procedure was checked first by applying it to a self-avoiding random walk where it gave
the right value κ = 8/3 with an accuracy better than 5%. Applying the procedure to the surface
quasi-geostrophic model we obtain ξ(t), whose statistics converges at l2

f < κt < 2π/kα to
Gaussian statistics with 〈ξ 2(t)〉 = κt and κ = 4 ± 0.2, i.e. within the temperature isolines
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behave locally as curves from SLE4. Worth stressing is the fact that the temperature field is
substantially non-Gaussian [7, 15] so that it is completely unclear how it can have isolines
with the same statistics as that of the isolines of the free Gaussian field with the same second
moment.

It is remarked that if the contour z(l) belongs to the class SLEκ , then the unit vector zl

has a Gaussian statistics with the second moment proportional to the logarithm of the contour
length. This property has also been found for the isolines of temperature and vorticity for both
models [6, 7].

Musacchio studied numerically the family of models for different m and established that
for all cases the SLE property of lines took place [43]. The connection between κ,D and α

is non-trivial: κ,D change linearly with m for 1 � m � 2 and freeze at κ = 4,D = 3/2
for 0 � m � 1 in agreement with (22) while the scaling exponent h changes according to
h = (2 − 2m)/3 for the whole interval 0 � m � 2. For negative m, all this is true for �

instead of a [43].

4. Conclusion

Turbulence statistics is always time irreversible. Generally, it seems natural that the statistics
within the pumping correlation scale (direct cascade) is more sensitive to the details of the
pumping statistics than the statistics at much larger scales (inverse cascade). For direct
cascades, the symmetries broken by pumping (scale invariance, isotropy) generally are not
restored in the inertial interval. In other words, the statistics at however small scales is sensitive
to the characteristics of pumping besides the flux. That can be alternatively explained in terms
of structures or in terms of conservation laws, either dynamical or statistical (zero modes).
Inverse cascades in systems with strong interaction may be not only scale invariant but also
conformal invariant. It is an example of emerging symmetry.
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[42] Löwner K 1923 Math. Ann. 89 103
[43] Musacchio S and Falkovich G 2009 (in preparation)
[44] Obukhov A M 1949 Izv. Akad. Nauk SSSR, Geogr. Geofiz. 13 58
[45] Pierrehumbert R T, Held I M and Swanson K L 1994 Chaos Solitons Fractals 4 1111
[46] Polyakov A M 1970 JETP Lett. 12 381
[47] Polyakov A M 1993 Nucl. Phys. B 396 367
[48] Polyakov A M 1995 Phys. Rev. E 52 6183
[49] Saleur H and Duplantier B 1987 Phys. Rev. Lett. 58 2325
[50] Schorghofer N 2000 Phys. Rev. E 61 6572
[51] Schramm O 2000 Isr. J. Math. 118 221
[52] Schramm O and Sheffield S 2005 Ann. Prob. 33 2127
[53] Shraiman B and Siggia E 1995 C. R. Acad. Sci. 321 279
[54] Shraiman B and Siggia E 2000 Nature 405 639
[55] Smith K et al 2002 J. Fluid. Mech 69 13
[56] Tabeling P 2002 Phys. Rep. 362 1
[57] Weinrib A 1984 Phys. Rev. B 29 387
[58] Zakharov V, Lvov V and Falkovich G 1992 Kolmogorov Spectra of Turbulence (Berlin: Springer)

18

http://dx.doi.org/10.1103/PhysRevLett.78.1904
http://dx.doi.org/10.1103/PhysRevLett.94.214502
http://dx.doi.org/10.1103/PhysRevE.50.3883
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1063/1.2207037
http://dx.doi.org/10.1103/PhysRevLett.75.3834
http://dx.doi.org/10.1016/S0167-2789(99)00171-2
http://dx.doi.org/10.1023/B:JOSS.0000013973.40984.3b
http://dx.doi.org/10.1017/S0022112095000012
http://dx.doi.org/10.1088/0034-4885/65/5/204
http://dx.doi.org/10.1063/1.1762301
http://dx.doi.org/10.1063/1.1692063
http://dx.doi.org/10.1017/S0022112074001881
http://dx.doi.org/10.1063/1.857970
http://dx.doi.org/10.1007/BF01448091
http://dx.doi.org/10.1016/0960-0779(94)90140-6
http://dx.doi.org/10.1016/0550-3213(93)90656-A
http://dx.doi.org/10.1103/PhysRevE.52.6183
http://dx.doi.org/10.1103/PhysRevLett.58.2325
http://dx.doi.org/10.1103/PhysRevE.61.6572
http://dx.doi.org/10.1007/BF02803524
http://dx.doi.org/10.1214/009117905000000477
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1016/S0370-1573(01)00064-3
http://dx.doi.org/10.1103/PhysRevB.29.387

	1. Introduction
	2. Direct cascades
	2.1. Burgers and KPZ
	2.2. 3D Navier--Stokes turbulence
	2.3. Passive scalar turbulence

	3. Inverse cascades
	3.1. Inverse cascade of a passive scalar in a compressible flow
	3.2. Inverse energy cascades in hydrodynamics
	3.3. Schramm--Loewner evolution (SLE)
	3.4. Isolines in turbulence

	4. Conclusion
	References

